Coin tosses

$$
\text { If a fair coin is tossed } 10 \text { times, what will we see? }
$$

Probability histogram for the number of H in 10 tosses of a fair coin.

Observations:

- The probability of seeing exactly 5 H in 10 tosses is just below 25%.
- The probability that the number of H is between 4 and 6 is close to 66%.
- The probability that the number of H is between 3 and 7 is about 89%.
- We could summarize these numbers by saying that we will probably see about 5 H in 10 tosses of a fair coin.

More coin tosses

If a fair coin is tossed 100 times, what will we see?

Probability histogram for the number of H in 100 tosses of a fair coin.

Probability histogram for the number of H in 100 tosses of a fair coin. There is a probability of 72.88% that we will see between 45 and 55 H in 100 tosses.

Observations:

- The probability of seeing exactly 50 H in 100 tosses is 7.96%.
- The probability that the number of H in 100 tosses is between 49 and 51 is 23.56%.
- The probability that the number of H in 100 tosses is between 48 and 52 is 38.26%.
- The probability that the number of H in 100 tosses is between 47 and 53 is 51.58%.
- The probability that the number of H in 100 tosses is between 46 and 54 is 63.18%.
- The probability that the number of H in 100 tosses is between 45 and 55 is 72.88%.

Analogously to the 10 -toss scenario, we can say that in 100 tosses of a fair coin, we will probably see about 50 H .

Question: In which of the two scenarios is our prediction more accurate?

Answer: It depends on how we are measuring the accuracy.

- In terms of the number of H , the prediction for 10 tosses gives a narrower range of possible values with a higher probability.
- In terms of the proportion of H, the prediction for 100 tosses gives a narrower range of possible percentages with higher probability.
- The probability is 66% that percentage of H in 10 tosses will be between 40% and 60%.
- The probability that the percentage of H in 100 tosses is between 46% and 54% is 63.18%.
- The probability is 72% that percentage of H in 100 tosses will be between 45% and 55%.

The 3R7B box: Ten tickets are drawn at random with replacement from a box that contains three red tickets and seven blue tickets...

Questions:

1. How many red tickets do you expect to see when you draw 10 tickets from the 3R7B box?
2. How accurate is our answer to the first question likely to be?
3. What does 'expect' mean in this context?

Answers:

1. We expect about 3 red tickets in 10 draws... Why?
2. To answer question 2., we need to study the probabilities of all the possible outcomes:

- The probability of exactly 3 red tickets in 10 draws is 26.68%.
- The probability that the number of red tickets in 10 draws is between 2 and 4 is about 70%.

The small number of draws is a little misleading (as it was in the case of coin tosses):
As the number of draws gets bigger, the observed number of red tickets is more and more likely to be farther and farther from the expected number of reds tickets.

20 draws

100 draws

Observations:

- The most likely number of red tickets in all three examples is

$$
P(\text { red ticket in one draw }) \cdot(\text { number of draws }) .
$$

This is the expected number of red tickets in each case.

- The probability that we see precisely the expected number of red tickets decreases as the number of draws increases. From about 27% (10 draws), to about 19% (20 draws), to about 8.5% (100 draws), to about 2.75% (1000 draws).
- The probability that the number of red tickets is close (e.g., within 2) of the expected number also decreases:
$P($ between 1 and 5 red tickets in 10 draws $)=92.45 \%$
$P($ between 4 and 8 red tickets in 20 draws $)=77.96 \%$
$P($ between 28 and 32 red tickets in 100 draws $)=41.43 \%$
$P($ between 298 and 302 red tickets in 1000 draws $)=13.69 \%$

As the number of draws from the box increases, the chance increases that the observed number of red tickets will deviate significantly from the expected number of red tickets:

- In 10,000 draws from the 3 R7B box, the probability that the number of red tickets is more than 30 away from 3000 is about 50.57%
- In $1,000,000$ draws from the 3R7B box, the probability that the number of red tickets is more than 300 away from 300,000 is about 51.2%.

Proportions, not numbers

It is more useful to compare the observed percentage of red tickets drawn to the expected percentage.

* The expected percentage of red tickets is the same as the percentage of red tickets in the box, namely 30%.
- In 10 draws from the 3R7B box, the probability that between 20% and 40% of the tickets are red is about 0.70 .
- In 20 draws from the 3R7B box, the probability that between 20% and 40% of the tickets are red is about 0.78 .
- In 100 draws from the 3R7B box, the probability that between 20% and 40% of the tickets are red is about 0.98 .
- In 1000 draws from the 3R7B box, the probability that between 20% and 40% of the tickets are red is more than 0.99 .
- In 1000 draws from the 3R7B box, the probability that between 28% and 32% of the tickets are red is about 0.85 .
- In 10000 draws from the 3R7B box, the probability that between 28% and 32% of the tickets are red is more than 0.99 .
- In 10000 draws from the 3R7B box, the probability that between 29% and 31% of the tickets are red is about 0.97 .
- In 10000 draws from the 3R7B box, the probability that between 29.5% and 30.5% of the tickets are red is about 0.73 .
- In $1,000,000$ draws from the 3 R7B box, the probability that between 29.5% and 30.5% of the tickets are red is more than 0.99 .

Summarizing:
As the number of draws from the $3 R 7 B$ box increases, the chance approaches 100% that the observed percentage of red tickets is very close to the expected percentage.

In other words,
If many tickets are drawn at random with replacement from the 3R7B box, then it is very likely that about 30% of the tickets will be red.

This is called the Law of Averages (for the 3R7B box).

The "law of averages" does not say that...

- ...we will definitely see exactly 30% red tickets or
- ... we will probably see exactly 30% red tickets. or
- ... we will definitely see about 30% red tickets.

There is always a (small) chance that the observed percentage of red tickets will be far from the expected percentage, even for an extremely large number of draws.

The law of averages, in general:

If tickets are drawn from a box containing $\square 1 s$ and $\square 0 s$, then as the number of draws increases, the probability approaches 100% that the observed percentage of $\square s$ is very close to the expected percentage of $\square s$ (= the percentage of $\square s$ in the box).

Comments:

- The law is true for draws with replacement and for draws without replacement. In fact, the results are even sharper when the draws are done without replacement.
- The difference between the observed number of 1 s and the expected number of 1 s is likely to get bigger as the number of draws grows (for draws with replacement).
- The law of averages does not say anything about what will happen on the next draw.

