NAME: Solutions

- For full credit, show your work and explain your reasoning on every question.
- Please write clearly - if we can't read it, we won't give you credit for it.

1. A study of the relationship between cigarette smoking and blood pressure in adult men collected data from 6235 U.S. men aged 20-40, and generated the following statistics:

$$
\begin{array}{rrr}
\bar{X}=24 & S D_{X}=5.5 & \\
\bar{Y}=135 & S D_{Y}=9 & r=0.7
\end{array}
$$

where $X=$ number of cigarettes per day, and $Y=$ systolic blood pressure, measured in mmH.
(a) (5 pts) Use this data to find the regression equation that predicts blood pressure from number of cigarettes smoked per day, and find the R.M.S. error of regression (SER).
The regression equation is $\hat{y}=\beta_{0}+\beta_{1} x$, where \hat{y} is the predicted average y-value for all observations with the same x-value (x). The coefficients β_{0}, β_{1} are found using the formulas

$$
\beta_{1}=r_{x y} \cdot \frac{S D_{y}}{S D_{x}}=0.7 \cdot \frac{9}{5.5} \approx 1.145 \text { and } \beta_{0}=\bar{y}-\beta_{1} \bar{x} \approx 135-1.145 \cdot 24=107.52,
$$

so the regression equation is

$$
\hat{y}=107.52+1.145 x \text {. }
$$

This is the same as the formula that we get using the 'regression method':

$$
\hat{y}=\bar{y}+r_{x y} \cdot \frac{x-\bar{x}}{S D_{x}} \cdot S D_{y}=135+\frac{0.7 \cdot(x-124) \cdot 9}{5.5} .
$$

The R.M.S. error of regression is the number

$$
S E R=\sqrt{1-r_{x y}^{2}} \times S D_{y}=\sqrt{1-0.49} \times 9 \approx 6.43 .
$$

(b) (3 pts) What is the predicted systolic blood pressure for a 30 -year old man who smokes 30 cigarettes a day? Include a margin of error (a 'plus/minus' number) with your estimate.
The predicted blood pressure for a 30 -year old man who smokes 30 cigarettes/day is the average blood pressure of all men age 20-40 who smoke 30 cigarettes/day, which we estimate using the regression equation:

$$
\hat{y}(30)=107.52+1.145 \cdot 30=141.87 .
$$

The margin of error is given by the SER, so that the predicted blood pressure for such a man is

$$
141.87 \pm 6.43 \mathrm{mmHg} .
$$

(c) (2 pts) Jane, a 32-year old woman who smokes 20 cigarettes a day, uses this regression equation to predict her systolic blood pressure to be about 130.4. Is this right? Explain.
This is not right. Jane is a woman, so we can't accurately predict her blood pressure using data about men. (Gender is a confounding variable for blood pressure.)
2. A fair coin is tossed three times.
(a) (3 pts) What is the probability that all three tosses result in Heads?

To find the probability of $H H H$, we rely on the assumption that the outcomes of the different tosses are independent, so that we can multiply the probabilities, as below:

$$
\begin{aligned}
P(H H H) & =P(H \text { on } 1 \text { st toss and } H \text { on } 2 \text { nd toss and } H \text { on } 3 \text { rd toss }) \\
& =P(H \text { on } 1 \text { st toss }) \times P(H \text { on } 2 \text { nd toss }) \times P(H \text { on } 3 \text { rd toss }) \\
& =\frac{1}{2} \times \frac{1}{2} \times \frac{1}{2}=\frac{1}{8}=12.5 \%
\end{aligned}
$$

(b) (2 pts) What is the probability that exactly one of the tosses results in Heads?

If we observe exactly one H in three tosses, then exactly one of the three sequences $H T T, T H T$ or $T T H$ must occur. The probability of each of these is 12.5% (just like $H H H$), and since they are mutually exclusive, ${ }^{\dagger}$ we can add the probabilities as below:

$$
\begin{aligned}
P(\text { exactly one } H \text { in three tosses }) & =P(H T T \text { or } T H T \text { or } T T H) \\
& =P(H T T)+P(T H T)+P(T T H) \\
& =12.5 \%+12.5 \%+12.5 \%=37.5 \% \quad(=3 / 8)
\end{aligned}
$$

(a) (3 pts) What is the probability that 2 is drawn at least one time?

First, the opposite of 'at least one 2 in four draws' is 'no 2 s in four draws'.
Second, The probability of not drawing a 2 on any one draw is $1 / 2$ because half of the tickets in the box are not 2 s .
Third, the outcomes of the individual draws are independent because the draws are done at random, with replacement, and this means that

$$
\begin{aligned}
P(\text { no } \boxed{2} \text { in four draws }) & =P(\text { no } \sqrt[2]{ } \text { on } 1 \text { st and no } 2 \text { on } 2 \text { nd and no } 2 \text { on } 3 \mathrm{rd} \text { and no } 2 \text { on } 4 \mathrm{th}) \\
& =P(\text { no } \boxed{2} \text { on } 1 \mathrm{st}) \times P(\mathrm{no} \boxed{2} \text { on } 2 \mathrm{nd}) \times P(\mathrm{no} \boxed{2} \text { on } 3 \mathrm{rd}) \times P(\mathrm{no} \boxed{2} \text { on } 4 \mathrm{th}) \\
& =\frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2}=\frac{1}{16}
\end{aligned}
$$

Finally,

$$
P(\text { at least one } 2 \text { in } 4 \text { draws })=1-P(\text { no } 2 \text { s in four draws })=1-\frac{1}{16}=\frac{15}{16}=93.75 \% .
$$

(b) (2 pts) Does your answer change if the draws are made without replacement? If so, what is the new probability? If not, explain why not.
Yes - the answer changes! If we draw four times without replacement then we draw all the tickets and we definitely see at least on 2 (in fact we see two of them). I.e., the probability is 100% that we see at least one 2 in this case.

[^0]
[^0]: ${ }^{\dagger}$ If we see $H T T$ then we don't see $T H T$, for example.

