- For full credit: show/explain your work/calculations on every question.
- Please write clearly - if we can't read it, we won't give you credit for it.
- Please do not write your answers between the lines of the questions. You can write your answers on the bottom and back of this sheet and/or on a separate piece of paper.

1. Four hundred draws are made at random with replacement from the box of numbered tickets containing $80 \boxed{1} \mathrm{~s}$ and $20 \boxed{0}$.
(a) (3 pts) What is the expected number of 1 s in the sample?

Expected number $=($ proportion of 1 s in box $) \times($ number of draws $)=\frac{80}{100} \times 400=320$.
(b) (3 pts) What is the standard error (SE) for the number of 1 s in the sample?
$\mathrm{SE}($ count $)=S D_{b o x} \times \sqrt{\text { number of draws }}=\sqrt{0.2 \times 0.8} \times \sqrt{400}=0.4 \times 20=8$.
(c) (4 pts) What is the (approximate) probability that the number of 1 s in the sample is between 320 and 330 ?
The SE is 8 , and the expected value is 320 , so $330-320=10=1.25 \times S E$. According to the Normal Approximation, the probability that the number of 1 s is between 320 and 330 is (approximately) equal to the area under the normal curve between 0 and 1.25 . This area is equal to half the area between -1.25 and 1.25 under the normal curve, which (according to the table) is 78.87%. So the probability that we seek is $78.87 \% / 2 \approx 39.44 \%$.
2. A market research firm surveyed a simple random sample of 1600 households from a large metropolitan area of more than 100, 000 households.
(a) (4 pts) Of the sample households, 960 owned two or more cars. Use this data to construct a 95%-confidence interval for the percentage of all households in the metropolitan area who own two or more cars, or explain why this is not possible.
Sample percentage of households with $2+$ cars $=\frac{960}{1600} \times 100 \%=60 \%$.
Standard Error for percentage $=\frac{S D_{\text {pop }}}{\sqrt{1600}} \times 100 \% \approx \frac{\sqrt{0.6 \times 0.4}}{40} \times 100 \% \approx 1.22 \%$.
Comment: We use the (known) SD of the sample as an estimate for the (unknown) SD of the population.
$\mathbf{9 5} \%$ confidence interval: (Sample\% $\pm 2 \mathrm{SE})=(60 \% \pm 2.44 \%)$.
(b) (4 pts) Of the sample households, 640 had annual incomes of $\$ 65,000$ or more. Use this data to construct a 95%-confidence interval for the percentage of households in the metropolitan area with incomes of $\$ 65,000$ or more, or explain why this is not possible.
Sample percentage of households with income of $\$ \mathbf{6 5 , 0 0 0}+=\frac{640}{1600} \times 100 \%=40 \%$.
Standard Error for percentage $=\frac{S D_{\text {pop }}}{\sqrt{1600}} \times 100 \% \approx \frac{\sqrt{0.4 \times 0.6}}{40} \times 100 \% \approx 1.22 \%$.
Comment: We use the (known) SD of the sample as an estimate for the (unknown) SD of the population.
95-\% confidence interval: (Sample\% $\pm 2 \mathrm{SE})=(40 \% \pm 2.44 \%)$.
(c) (2 pts) The 1600 households in the sample included 2500 children age 6 or younger. Of these 2500 children, 1375 watched at least three hours of TV per day.
True or false, and explain: This data shows that the percentage of all children age 6 or younger in the metropolitan area who watch at least three hours of TV per day is about 55% give-or-take 2%.
False: The calculations for sample percentage and standard error are correct,

$$
\frac{1375}{2500} \times 100 \% 55 \% \text { and } \frac{\sqrt{0.55 \times 0.45}}{\sqrt{2500}} \times 100 \% \approx 1 \%
$$

Which might lead to the conclusion that $(55 \% \pm 2 \%)$ is a 95%-confidence interval for the percentage of children in the population, age 6 and under, who watch $3+$ hours of TV per day. The problem is that this is not a simple random sample of such children - it is a cluster sample, and the correct standard error in this case will generally be larger and the normal approximation is not appropriate.

